On the Eigenvectors of a Finite-Difference Approximation to the Sturm-Liouville Eigenvalue Problem

By Eckart Gekeler

Abstract

This paper is concerned with a centered finite-difference approximation to

 to the nonselfadjoint Sturm-Liouville eigenvalue problem$$
\begin{aligned}
L[u] & =-\left[a(x) u_{x}\right]_{x}-b(x) u_{x}+c(x) u=\lambda u, \quad 0<x<1 \\
u(0) & =u(1)=0
\end{aligned}
$$

It is shown that the eigenvectors W_{p} of the $M \times M$-matrix $(\Delta x=1 /(M+1)$ mesh size), which approximates L, are bounded in the maximum norm independent of M if they are normalized so that $\left|W_{p}\right|_{2}=1$.

1. Introduction. The present paper is concerned with the nonselfadjoint problem

$$
\begin{align*}
-\left[a(x) u_{x}\right]_{x}-b(x) u_{x}+c(x) u & =\lambda u, \quad 0<x<1, \\
u(0) & =u(1)=0, \tag{1}
\end{align*}
$$

where $a(x) \geqslant \alpha>0, c(x) \geqslant 0$, and a, b, c are all bounded and smooth functions. This problem has an infinite sequence of positive and distinct eigenvalues $0<\lambda_{1}<$ $\lambda_{2}<\lambda_{3}<\cdots$ and a corresponding sequence of smooth eigenfunctions $u^{1}, u^{2}, u^{3}, \cdots$ (see, for instance Protter-Weinberger [10, p. 37] and Coddington-Levinson [4, p. 212]). Following Courant-Hilbert [5, p. 334], the eigenfunctions u^{p} are uniformly bounded in the supremum norm if they are normalized so that

$$
\int_{0}^{1}\left|u^{p}(x)\right|^{2} d x=1, \quad p=1,2,3, \cdots .
$$

Of course, by the well-known transformation

$$
\begin{equation*}
u(x)=\exp \left(-1 / 2 \int_{0}^{x} \frac{b(t)}{a(t)} d t\right) w(x) \tag{2}
\end{equation*}
$$

(1) may be put in the selfadjoint form

Received October 4, 1973.
AMS (MOS) subject classifications (1970). Primary 65L15.
Key words and phrases. Sturm-Liouville eigenvalue problem, finite-difference approximation.

$$
\begin{aligned}
-\left[a(x) w_{x}\right]_{x}+\widetilde{c}(x) w & =\lambda w, \quad 0<x<1, \\
w(0) & =w(1)=0,
\end{aligned}
$$

where

$$
\widetilde{c}(x)=c(x)+1 / 2 b_{x}(x)+1 / 4 b^{2}(x) / a(x) .
$$

Here, in order to obtain $\widetilde{c}(x) \geqslant 0$, we have to make a restricting assumption on b_{x}. Therefore, we choose the direct approximation of (1) by means of the finite-difference equations

$$
-\frac{a_{k+1 / 2}\left(v_{k+1}-v_{k}\right)-a_{k-1 / 2}\left(v_{k}-v_{k-1}\right)}{\Delta x^{2}}-b_{k} \frac{v_{k+1}-v_{k-1}}{2 \Delta x}+c_{k} v_{k}=\Lambda v_{k}
$$

$$
\begin{equation*}
k=1, \cdots, M \tag{3}
\end{equation*}
$$

$$
v_{0}=v_{M+1}=0,
$$

where $M \in \mathbf{N}, \Delta x=1 /(M+1)$, and $v_{k}=v(k \Delta x)$. Equivalently, we may write (3) in matrix-vector notation

$$
L V=\Lambda V
$$

where $V=\left(v_{1}, \cdots, v_{M}\right)^{T}$ and the matrix L may be easily derived from (3).
Let $|b(x)| \leqslant \beta$ and $0<\Delta x<2 \alpha / \beta$. Then the matrix L is equivalent to a real symmetric matrix (see Carasso [2]). Using this fact and Theorem 1.8 of Varga [11], it can be shown that all eigenvalues Λ_{p} of (3) are real and positive, $0<\Lambda_{1} \leqslant \Lambda_{2} \leqslant$ $\Lambda_{3} \leqslant \cdots \leqslant \Lambda_{M}$, and there exists a complete sequence of corresponding eigenvectors V^{p}. A result of Carasso [2, Corollary 1] says that there exist a constant K and an integer p_{0}, both independent of M, such that

$$
\left|V^{p}\right|_{\infty}=\max _{1 \leqslant k \leqslant M}\left|v_{k}^{p}\right| \leqslant K p^{1 / 2}, \quad p_{0} \leqslant p \leqslant M
$$

if

$$
\left|V^{p}\right|_{2}^{2}=\Delta x \sum_{k=1}^{M}\left|v_{k}^{p}\right|^{2}=1
$$

In the selfadjoint case, this result goes back to Bückner [1]. In this paper, we prove the following theorem:

Theorem. Let $a(x) \geqslant \alpha>0$ and $c(x) \geqslant 0,0<x<1$. Assume that a, b, and c are differentiable bounded functions with bounded derivatives. Let $|b(x)| \leqslant \beta$. Let $0<\Delta x \leqslant \alpha / \beta$ and let $\left\{V^{p}\right\}_{p=1}^{M}$ be the eigenvectors of (3), normalized so that $\left|V^{p}\right|_{2}=1$. Then

$$
\left|\dot{V}^{p}\right|_{\infty} \leqslant \kappa, \quad p=1, \cdots, M
$$

for some constant κ independent of M.

Remark 1. In the case of the equation $u_{x x}=\lambda u$, this result may be proved by explicit computation of the eigenvectors V^{p} (see Isaacson-Keller [9, 9.1.1]).

Applications of the Theorem to the theory of finite-difference approximations to parabolic and hyperbolic partial differential equations are given in [3], [7], [8].
2. Proof of the Theorem. Instead of L, we consider, as in [2], the eigenvectors $D^{-1} V^{p}$ of the similar matrix $D^{-1} L D$ defined below. But, in contrast to Carasso [2], who uses a discrete maximum principle for his estimation, we then transpose the proof of Courant-Hilbert [5, p. 334] to the resulting discrete problem.

The following basic results are needed.
Lemma 1 (Carasso [2, Lemma 1], [3, Lemma 3.1]). Let $D=\left(d_{1}, \cdots, d_{M}\right)$ be the diagonal matrix with

$$
d_{1}=1, \quad d_{i}=+\left[\prod_{k=1}^{i-1} \frac{a_{k+1 / 2}-b_{k+1} \Delta x / 2}{a_{k+1 / 2}+b_{k} \Delta x / 2}\right]^{1 / 2}, \quad i=2, \cdots, M .
$$

For $0<\Delta x<2 \alpha / \beta$, we have $d_{i}>0$ and

$$
|D|_{\infty} \leqslant \kappa_{1}, \quad\left|D^{-1}\right|_{\infty} \leqslant \kappa_{2}
$$

for constants κ_{1}, κ_{2} independent of M. Furthermore, $D^{-1} L D=(P+Q) / \Delta x^{2}$ where $P=\left(p_{i k}\right)_{i, k=1, \cdots, M}$,

$$
\begin{array}{rlrl}
p_{i k} & =\left(p_{k+1 / 2}+p_{k-1 / 2}\right), & & i=k, \\
& =-p_{k+1 / 2}, & & i=k+1, \\
& =-p_{i+1 / 2}, & & k=i+1, \\
& =0, & & \text { otherwise, } \\
p_{k+1 / 2} & =\left(a_{k+1 / 2}-b_{k+1} \Delta x / 2\right)^{1 / 2}\left(a_{k+1 / 2}+b_{k} \Delta x / 2\right)^{1 / 2},
\end{array}
$$

and $Q=\left(q_{1}, \cdots, q_{M}\right)$ is the diagonal matrix with

$$
q_{k}=\left(a_{k+1 / 2}+a_{k-1 / 2}\right)-\left(p_{k+1 / 2}+p_{k-1 / 2}\right)+\Delta x^{2} c_{k}
$$

Remark 2. The change of variables $V=D W$ is a discrete analog to (2) [2].
Lemma 2 (Carasso [2, Theorem 1]). Let Λ_{p}, V^{p} be the characteristic pairs of the matrix L with $\left|V^{p}\right|_{2}=1$. Let u^{p} be an eigenfunction of (1) corresponding to λ_{p} and let U^{p} be the vector of dimension M obtained from u^{p} by mesh-point evaluation. Assume u^{p} normalized so that $\left|D^{-1} U^{p}\right|_{2}=\left|D^{-1} V^{p}\right|_{2}$, then, as $\Delta x \longrightarrow 0$, we have

$$
\begin{equation*}
\left|\lambda_{p}-\Lambda_{p}\right| \leqslant \kappa_{3}(p) \Delta x^{2}, \quad\left|U^{p}-V^{p}\right|_{2} \leqslant \kappa_{4}(p) \Delta x^{2} \tag{4}
\end{equation*}
$$

where κ_{3}, κ_{4} are positive constants depending only on p.
In the selfadjoint case, Lemma 2 was proved by Gary [6].
Remark 3. The estimation (4) implies $\left|U^{p}-V^{p}\right|_{\infty} \leqslant \kappa_{4}(p) \Delta x^{3 / 2}$.
Lemma 3. Let

$$
C_{l}(W)=\sum_{k=1}^{l}\left[p_{k+1 / 2}\left(w_{k}-w_{k+1}\right)-p_{k-1 / 2}\left(w_{k}-w_{k-1}\right)\right] q_{k} w_{k} / \Delta x^{2}
$$

Then, under the assumptions of the Theorem,

$$
C_{l}\left(W^{p}\right)=-q_{l} p_{l+1 / 2} w_{l+1}^{p} w_{l}^{p} / \Delta x^{2}+O(1), \quad l=1, \cdots, M
$$

where $W^{p}=D^{-1} V^{p}$ and $O(1)$ denotes a function which has a bound independent of M.

Proof. We show at first that $\left|q_{k} / \Delta x^{2}\right| \leqslant \kappa_{5}$ independently of M. To this end, it suffices to consider $a_{k+1 / 2}-p_{k+1 / 2}$. By means of the binomial theorem, we obtain

$$
\begin{aligned}
a_{k+1 / 2} & -p_{k+1 / 2} \\
& =a_{k+1 / 2}-a_{k+1 / 2}\left(1-\frac{b_{k+1} \Delta x}{4 a_{k+1 / 2}}+O\left(\Delta x^{2}\right)\right)\left(1+\frac{b_{k} \Delta x}{4 a_{k+1 / 2}}+O\left(\Delta x^{2}\right)\right)
\end{aligned}
$$

Inserting $b_{k+1}=b_{k}+O(\Delta x)$, we find that

$$
\begin{equation*}
a_{k+1 / 2}-p_{k+1 / 2}=O\left(\Delta x^{2}\right) \tag{5}
\end{equation*}
$$

Now, since $w_{0}^{p}=0$,
$C_{l}\left(W^{p}\right)=-q_{l} p_{l+1 / 2} w_{l+1}^{p} w_{l}^{p} / \Delta x^{2}$

$$
+\sum_{k=1}^{l} \frac{q_{k}}{\Delta x^{2}}\left(p_{k+1 / 2}-p_{k-1 / 2}\right) w_{k}^{p} w_{k}^{p}+\sum_{k=1}^{l-1} \frac{q_{k+1}-q_{k}}{\Delta x^{2}} p_{k+1 / 2} w_{k+1}^{p} w_{k}^{p} .
$$

But, by the mean value theorem, we have $p_{k+1}-p_{k}=O(\Delta x)$ and $\left(q_{k+1}-q_{k}\right) / \Delta x^{2}=O(\Delta x)$. Hence, using Schwarz's inequality and $\left|W^{p}\right|_{2} \leqslant \kappa_{6}$, we obtain the desired result.

Now, according to Lemma 1, it suffices to prove the Theorem for the eigenvectors $W^{p}=D^{-1} V^{p}$ of the matrix $(P+Q) / \Delta x^{2}$ which also has the eigenvalues Λ_{p}. We multiply the k th row of

$$
\left(1 / \Delta x^{2}\right)(P+Q) W^{p}=\Lambda_{p} W^{p}
$$

by

$$
p_{k+1 / 2}\left(w_{k}^{p}-w_{k+1}^{p}\right)-p_{k-1 / 2}\left(w_{k}^{p}-w_{k-1}^{p}\right)
$$

and obtain, by adding all rows from $k=1$ to $k=l$,

$$
\left[\frac{p_{l+1 / 2}\left(w_{l}^{p}-w_{l+1}^{p}\right)}{\Delta x}\right]^{2}+C_{l}\left(w^{p}\right)
$$

$$
\begin{equation*}
+\Lambda_{p} p_{l+1 / 2} w_{l+1}^{p} w_{l}^{p}-\Lambda_{p} \Delta x \sum_{k=1}^{l} p_{x}\left(\xi_{k}\right) w_{k}^{p} w_{k}^{p}=\left[\frac{p_{1 / 2}\left(w_{1}^{p}-w_{0}^{p}\right)}{\Delta x}\right]^{2} \tag{6}
\end{equation*}
$$

where $(k-1 / 2) \Delta x<\xi_{k}<(k+1 / 2) \Delta x$. In order to eliminate the term on the right side of (6), we sum up Eqs. (6) for $l=1$ to $l=M$, add $\left(p_{1 / 2}\left(w_{1}^{p}-w_{0}^{p}\right) / \Delta x\right)^{2}$ to both sides, and divide by $M+1=1 / \Delta x$. Then

$$
\left[\frac{p_{1 / 2}\left(w_{1}^{p}-w_{0}^{p}\right)}{\Delta x}\right]^{2}=\Delta x \sum_{l=0}^{M}\left[\frac{p_{l+1 / 2}\left(w_{l+1}^{p}-w_{l}^{p}\right)}{\Delta x}\right]^{2}+\Delta x \sum_{l=1}^{M} C_{l}\left(W^{p}\right)
$$

$$
\begin{equation*}
+\Lambda_{p} \Delta_{x} \sum_{l=1}^{M} p_{l+1 / 2} w_{l+1}^{p} w_{l}^{p}-\Lambda_{p} \Delta x^{2} \sum_{l=1}^{M} \sum_{k=1}^{l} p_{x}\left(\xi_{k}\right) w_{k}^{p} w_{k}^{p} \tag{7}
\end{equation*}
$$

But

$$
\begin{equation*}
0<\alpha / 2<p_{l+1 / 2}<\kappa_{7} \quad\left(\kappa_{7}>1\right) \tag{8}
\end{equation*}
$$

if $0<\Delta x \leqslant \alpha / \beta$. Thus, using the fundamental relation

$$
\sum_{l=0}^{M} p_{l+1 / 2}\left(w_{l+1}-w_{l}\right)^{2}=W^{T} P W
$$

$\left(w_{0}=w_{M+1}=0\right)$, we derive

$$
\begin{aligned}
& \Delta x \sum_{l=0}^{M}\left[\frac{p_{l+1 / 2}\left(w_{l+1}^{p}-w_{l}^{p}\right)}{\Delta x}\right]^{2} \leqslant \Delta x \kappa_{7}\left(W^{p}\right)^{T} P W^{p} / \Delta x^{2} \\
& \quad=\Delta x \kappa_{7}\left(W^{p}\right)^{T}(P+Q) W^{p} / \Delta x^{2}-\Delta x \kappa_{7} \sum_{l=1}^{M} q_{l} w_{l}^{p} w_{l}^{p} / \Delta x^{2} \\
& \quad \leqslant \Delta x \kappa_{7} \Lambda_{p}\left(W^{p}\right)^{T} W^{p}+\kappa_{5} \kappa_{7} \Delta x\left(W^{p}\right)^{T} W^{p}=\kappa_{7} \Lambda_{p}+\kappa_{5} \kappa_{7}
\end{aligned}
$$

since $\left|q_{l}\right| \Delta x^{2} \mid \leqslant \kappa_{5}$ independently of M and $\left|W^{p}\right|_{2}^{2}=1$. Hence, applying Schwarz's inequality, we find from (7) by means of the assumption and Lemma 3 that

$$
\left[p_{1 / 2}\left(w_{1}^{p}-w_{0}^{p}\right) / \Delta x\right]^{2} \leqslant \kappa_{8} \Lambda_{p}+\kappa_{9}
$$

From this estimation, Eq. (6), and Lemma 3, we deduce that

$$
\left(\Lambda_{p}-q_{l} / \Delta x^{2}\right) p_{l+1 / 2} w_{l+1}^{p} w_{l}^{p} \leqslant \kappa_{10} \Lambda_{p}+\kappa_{11}
$$

Consequently, observing (8), we obtain, in case $\Lambda_{p}>\kappa_{5}$, that

$$
\begin{equation*}
w_{l+1}^{p} w_{l}^{p} \leqslant \kappa_{12}, \quad l=1, \cdots, M \tag{9}
\end{equation*}
$$

for some constant κ_{12} independent of M. For $\Lambda_{p} \leqslant \kappa_{5}$, the assertion of the Theorem follows by Lemma 2, Remark 3.

Finally, we return once more to Eq. (6). The above estimation yields

$$
\left[\frac{p_{l+1 / 2}\left(w_{l+1}^{p}-w_{l}^{p}\right)}{\Delta x}\right]^{2} \leqslant \kappa_{13} \Lambda_{p}+\kappa_{14}, \quad l=1, \cdots, M
$$

or, using (9),

$$
\begin{aligned}
\left|w_{l}^{p}\right|^{2} & \leqslant\left|w_{l}^{p}\right|^{2}+\left|w_{l+1}^{p}\right|^{2}=\left(w_{l+1}^{p}-w_{l}^{p}\right)^{2}+2 w_{l}^{p} w_{l+1}^{p} \\
& =\frac{\Delta x^{2}}{p_{l+1 / 2}^{2}}\left[\frac{p_{l+1 / 2}\left(w_{l+1}^{p}-w_{l}^{p}\right)}{\Delta x}\right]^{2}+2 w_{l+1}^{p} w_{l}^{p} \\
& \leqslant \Delta x^{2}\left(\kappa_{15} \Lambda_{p}+\kappa_{16}\right)+\kappa_{17}=\kappa, \quad l=1, \cdots, M .
\end{aligned}
$$

Hence, $\max _{1 \leqslant p \leqslant M}\left\{\left|W^{p}\right|_{\infty}\right\}$ is bounded independently of M.

Mathematics Department

Universität Stuttgart
7000 Stuttgart, Germany

1. H. BÜCKNER, "Über Konvergenzsätze, die sich bei der Anwendung eines Differenzenverfahrens auf ein Sturm-Liouvillesches Eigenwertproblem ergeben," Math. Z., v. 51, 1944, pp. 423465. MR 11, 58 .
2. A. CARASSO, "Finite-difference methods and the eigenvalue problem for nonselfadjoint Sturm-Liouville operators,".Math. Comp., v. 23, 1969, pp. 717-729. MR 41 \#2938.
3. A. CARASSO \& S. V. PARTER, An analysis of 'boundary-value techniques' for parabolic problems," Math. Comp., v. 24, 1970, pp. 315-340. MR 44 \#1 249.
4. E. A. CODDINGTON \& N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. MR 16, 1022.
5. R. COURANT \& D. HILBERT, Methoden der Mathematischen Physik. Vol. 1, Interscience, New York, 1953. MR 16, 426.
6. J. GARY, "Computing eigenvalues of ordinary differential equations by finite differences,"

7. E. GEKELER, "Long-range and periodic solutions of parabolic problems," Math. Z., v. 134, 1973, pp. 53-66.
8. E. GEKELER, " A-convergence of finite-difference approximations of parabolic initial boundary value problems," SIAM J. Numer. Anal. (To appear.)
9. E. ISAACSON \& H. B. KELLER, Analysis of Numerical Methods, Wiley, New York, 1966. MR 34 \#924.
10. M. H. PROTTER \& H. F. WEINBERGER, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, N. J., 1967. MR 36 \#2935.
11. R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 28 \#1 725.
